THE FINITE SECTION METHOD FOR DISSIPATIVE OPERATORS
نویسندگان
چکیده
منابع مشابه
The Finite Section Method for Dissipative Operators
We show that for self-adjoint Jacobi matrices and Schrödinger operators, peturbed by dissipative potentials in l(N) and L(0,∞) respectively, the finite section method does not omit any points of the spectrum. In the Schrödinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for a.c. spectrum. This is the a...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Quantitative Estimates for the Finite Section Method
The finite section method is a classical scheme to approximate the solution of an infinite system of linear equations. We present quantitative estimates for the rate of the convergence of the finite section method on weighted `-spaces. Our approach uses recent results from the theory of Banach algebras of matrices with off-diagonal decay. Furthermore, we demonstrate that Banach algebra theory p...
متن کاملComposition Operators, Matrix Representation, and the Finite Section Method: A Theoretical Framework for Maps between Shapes
This paper intends to lay the theoretical foundation for the method of functional maps, first presented in 2012 by Ovsjanikov, Ben-Chen, Solomon, Butscher and Guibas in the field of the theory and numerics of maps between shapes. We show how to analyze this method by looking at it as an application of the theories of composition operators, of matrix representation of operators on separable Hilb...
متن کاملQuasi-diagonality and the finite section method
Quasidiagonal operators on a Hilbert space are a large and important class (containing all self-adjoint operators for instance). They are also perfectly suited for study via the finite section method (a particular Galerkin method). Indeed, the very definition of quasidiagonality yields finite sections with good convergence properties. Moreover, simple operator theory techniques yield estimates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematika
سال: 2014
ISSN: 0025-5793,2041-7942
DOI: 10.1112/s0025579314000126